1,219 research outputs found

    The Constraints of Conformal Symmetry on RG Flows

    Full text link
    If the coupling constants in QFT are promoted to functions of space-time, the dependence of the path integral on these couplings is highly constrained by conformal symmetry. We begin the present note by showing that this idea leads to a new proof of Zamolodchikov's theorem. We then review how this simple observation also leads to a derivation of the a-theorem. We exemplify the general procedure in some interacting theories in four space-time dimensions. We concentrate on Banks-Zaks and weakly relevant flows, which can be controlled by ordinary and conformal perturbation theories, respectively. We compute explicitly the dependence of the path integral on the coupling constants and extract the change in the a-anomaly (this agrees with more conventional computations of the same quantity). We also discuss some general properties of the sum rule found in arXiv:1107.3987 and study it in several examples.Comment: 25 pages, 5 figure

    Neonatal-onset multisystem inflammatory disease responsive to interleukin-1 beta inhibition

    Get PDF
    BACKGROUND:Neonatal-onset multisystem inflammatory disease is characterized by fever, urticarial rash, aseptic meningitis, deforming arthropathy, hearing loss, and mental retardation. Many patients have mutations in the cold-induced autoinflammatory syndrome 1 (CIAS1) gene, encoding cryopyrin, a protein that regulates inflammation.METHODS:We selected 18 patients with neonatal-onset multisystem inflammatory disease (12 with identifiable CIAS1 mutations) to receive anakinra, an interleukin-1-receptor antagonist (1 to 2 mg per kilogram of body weight per day subcutaneously). In 11 patients, anakinra was withdrawn at three months until a flare occurred. The primary end points included changes in scores in a daily diary of symptoms, serum levels of amyloid A and C-reactive protein, and the erythrocyte sedimentation rate from baseline to month 3 and from month 3 until a disease flare.RESULTS:All 18 patients had a rapid response to anakinra, with disappearance of rash. Diary scores improved (P<0.001) and serum amyloid A (from a median of 174 mg to 8 mg per liter), C-reactive protein (from a median of 5.29 mg to 0.34 mg per deciliter), and the erythrocyte sedimentation rate decreased at month 3 (all P<0.001), and remained low at month 6. Magnetic resonance imaging showed improvement in cochlear and leptomeningeal lesions as compared with baseline. Withdrawal of anakinra uniformly resulted in relapse within days; retreatment led to rapid improvement. There were no drug-related serious adverse events.CONCLUSIONS:Daily injections of anakinra markedly improved clinical and laboratory manifestations in patients with neonatal-onset multisystem inflammatory disease, with or without CIAS1 mutations

    An Elastic Interaction-Based Loss Function for Medical Image Segmentation

    Full text link
    Deep learning techniques have shown their success in medical image segmentation since they are easy to manipulate and robust to various types of datasets. The commonly used loss functions in the deep segmentation task are pixel-wise loss functions. This results in a bottleneck for these models to achieve high precision for complicated structures in biomedical images. For example, the predicted small blood vessels in retinal images are often disconnected or even missed under the supervision of the pixel-wise losses. This paper addresses this problem by introducing a long-range elastic interaction-based training strategy. In this strategy, convolutional neural network (CNN) learns the target region under the guidance of the elastic interaction energy between the boundary of the predicted region and that of the actual object. Under the supervision of the proposed loss, the boundary of the predicted region is attracted strongly by the object boundary and tends to stay connected. Experimental results show that our method is able to achieve considerable improvements compared to commonly used pixel-wise loss functions (cross entropy and dice Loss) and other recent loss functions on three retinal vessel segmentation datasets, DRIVE, STARE and CHASEDB1

    Attitudes and beliefs regarding organ donation among South Asian people in the UK

    Get PDF
    There is an acute shortage of organ donors in the UK, specifically among South Asian communities. This article reports the findings from the largest ever study undertaken among South Asian people in the UK that seeks to explore attitudes and beliefs towards organ donation. This article highlights that seemingly intractable factors, such as religion and culture, are often tied to more complex issues, such as distrust in the medical system and lack of awareness, that contribute to the shortage of organ donors among South Asian communities in the U

    An allosteric role for receptor activity-modifying proteins in defining GPCR pharmacology

    Get PDF
    G protein-coupled receptors are allosteric proteins that control transmission of external signals to regulate cellular response. Although agonist binding promotes canonical G protein signalling transmitted through conformational changes, G protein-coupled receptors also interact with other proteins. These include other G protein-coupled receptors, other receptors and channels, regulatory proteins and receptor-modifying proteins, notably receptor activity-modifying proteins (RAMPs). RAMPs have at least 11 G protein-coupled receptor partners, including many class B G protein-coupled receptors. Prototypic is the calcitonin receptor, with altered ligand specificity when co-expressed with RAMPs. To gain molecular insight into the consequences of this protein–protein interaction, we combined molecular modelling with mutagenesis of the calcitonin receptor extracellular domain, assessed in ligand binding and functional assays. Although some calcitonin receptor residues are universally important for peptide interactions (calcitonin, amylin and calcitonin gene-related peptide) in calcitonin receptor alone or with receptor activity-modifying protein, others have RAMP-dependent effects, whereby mutations decreased amylin/calcitonin gene-related peptide potency substantially only when RAMP was present. Remarkably, the key residues were completely conserved between calcitonin receptor and AMY receptors, and between subtypes of AMY receptor that have different ligand preferences. Mutations at the interface between calcitonin receptor and RAMP affected ligand pharmacology in a RAMP-dependent manner, suggesting that RAMP may allosterically influence the calcitonin receptor conformation. Supporting this, molecular dynamics simulations suggested that the calcitonin receptor extracellular N-terminal domain is more flexible in the presence of receptor activity-modifying protein 1. Thus, RAMPs may act in an allosteric manner to generate a spectrum of unique calcitonin receptor conformational states, explaining the pharmacological preferences of calcitonin receptor-RAMP complexes. This provides novel insight into our understanding of G protein-coupled receptor-protein interaction that is likely broadly applicable for this receptor class

    Charge Fractionalization in nonchiral Luttinger systems

    Get PDF
    One-dimensional metals, such as quantum wires or carbon nanotubes, can carry charge in arbitrary units, smaller or larger than a single electron charge. However, according to Luttinger theory, which describes the low-energy excitations of such systems, when a single electron is injected by tunneling into the middle of such a wire, it will tend to break up into separate charge pulses, moving in opposite directions, which carry definite fractions ff and (1−f)(1-f) of the electron charge, determined by a parameter gg that measures the strength of charge interactions in the wire. (The injected electron will also produce a spin excitation, which will travel at a different velocity than the charge excitations.) Observing charge fractionalization physics in an experiment is a challenge in those (nonchiral) low-dimensional systems which are adiabatically coupled to Fermi liquid leads. We theoretically discuss a first important step towards the observation of charge fractionalization in quantum wires based on momentum-resolved tunneling and multi-terminal geometries, and explain the recent experimental results of H. Steinberg {\it et al.}, Nature Physics {\bf 4}, 116 (2008).Comment: 31 pages, final version to appear in Annals of Physic

    Brain and blood biomarkers of tauopathy and neuronal injury in humans and rats with neurobehavioral syndromes following blast exposure

    Get PDF
    Traumatic brain injury (TBI) is a risk factor for the later development of neurodegenerative diseases that may have various underlying pathologies. Chronic traumatic encephalopathy (CTE) in particular is associated with repetitive mild TBI (mTBI) and is characterized pathologically by aggregation of hyperphosphorylated tau into neurofibrillary tangles (NFTs). CTE may be suspected when behavior, cognition, and/or memory deteriorate following repetitive mTBI. Exposure to blast overpressure from improvised explosive devices (IEDs) has been implicated as a potential antecedent for CTE amongst Iraq and Afghanistan Warfighters. In this study, we identified biomarker signatures in rats exposed to repetitive low-level blast that develop chronic anxiety-related traits and in human veterans exposed to IED blasts in theater with behavioral, cognitive, and/or memory complaints. Rats exposed to repetitive low-level blasts accumulated abnormal hyperphosphorylated tau in neuronal perikarya and perivascular astroglial processes. Using positron emission tomography (PET) and the [18F]AV1451 (flortaucipir) tau ligand, we found that five of 10 veterans exhibited excessive retention of [18F]AV1451 at the white/gray matter junction in frontal, parietal, and temporal brain regions, a typical localization of CTE tauopathy. We also observed elevated levels of neurofilament light (NfL) chain protein in the plasma of veterans displaying excess [18F]AV1451 retention. These findings suggest an association linking blast injury, tauopathy, and neuronal injury. Further study is required to determine whether clinical, neuroimaging, and/or fluid biomarker signatures can improve the diagnosis of long-term neuropsychiatric sequelae of mTBI

    Reliability of the Marlowe-Crowne social desirability scale in Ethiopia, Kenya, Mozambique, and Uganda

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies of HIV often use self-reported surveys to measure sexual knowledge, attitudes, and practices. However, the self-reported data are vulnerable to social desirability (SD), a propensity of individuals to report favorable responses. The Marlowe-Crowne Social Desirability Scale (MC-SDS) was developed as a measure of the effect of social desirability, but it has not been adapted for or used in Africa. This study aimed to apply the MC-SDS nested in an HIV behavioral intervention program and to measure its reliability in four African countries.</p> <p>Methods</p> <p>The MC-SDS was adapted based on consultations with local stakeholders and pilot tested in Ethiopia, Kenya, Mozambique, and Uganda. Trained interviewers administered the modified 28-item MC-SDS survey to 455 men and women (ages 15-24 years). The scores for the social desirability scales were calculated for all participants. An analysis of the internal consistency of responses was conducted using the Cronbach's α coefficient. Acceptable internal consistency was defined as an α coefficient of ≄ 0.70.</p> <p>Results</p> <p>Mean social desirability scores ranged from a low of 15.7 in Kenya to a high of 20.6 in Mozambique. The mean score was 17.5 for Uganda and 20.6 for Mozambique. The Cronbach's α coefficients were 0.63 in Kenya, 0.66 in Mozambique, 0.70 in Uganda, and 0.80 in Ethiopia.</p> <p>Conclusions</p> <p>The MC-SDS can be effectively adapted and implemented in sub-Saharan Africa. The reliability of responses in these settings suggest that the MC-SDS could be a useful tool for capturing potential SD in surveys of HIV related risk behaviors.</p

    Breast imaging technology: Application of magnetic resonance imaging to angiogenesis in breast cancer

    Get PDF
    Magnetic resonance imaging (MRI) techniques enable vascular function to be mapped with high spatial resolution. Current methods for imaging in breast cancer are described, and a review of recent studies that compared dynamic contrast-enhanced MRI with histopathological indicators of tumour vascular status is provided. These studies show correlation between in vivo dynamic contrast measurements and in vitro histopathology. Dynamic contrast enhanced MRI is also being applied to assessment of the response of breast tumours to treatment
    • 

    corecore